Dasar-dasar MATLAB

by Jusak Irawan, STIKOM Surabaya

Perintah-Perintah Dasar

MATLAB akan memberikan respons secara langsung terhadap ekspresi apapun yang diketikkan pada editor MATLAB. Sebagai contoh:

Penugasan nilai ke dalam variabel dapat dilakukan seperti contoh di bawah ini:

Note:

m-File

Note:

Note:

m-file merupakan editor MATLAB yang berguna sebagai tempat menuliskan script dari kode-kode MATLAB. File ini disimpan dalam bentuk file dengan ektensi .m. Script yang tersimpan dalam bentuk m-file dapat dieksekusi secara langsung melalui MATLAB command window.

Vektor

Membuat vektor dengan MATLAB, sebagai contoh:

>> a = [1 2 3 4 5 6 7]

Table 1: Fungsi matematika dalam MATLAB

Simbol	Operasi		
pi	π		
exp(n)	Bilangan natural berpangkat- n, e^n		
log	Logaritma natural		
log2	Logaritma dengan basis-2		
log10	Logaritma dengan basis-10 (desimal)		
sin	Sinus		
COS	Cosinus		
tan	Tangent		
asin	Inverse sinus		
acos	Inverse cosinus		
atan	Inverse tangent		

a =

1 2 3 4 5 6 7

Membuat vektor dengan bilangan ascending dengan kenaikan 2:

>> t = 0:2:20 t = 0 2 4 6 8 10 12 14 16 18 20

Manipulasi vektor dapat dilakukan seperti contoh di bawah ini:

>> b = a + 5 y = 6 7 8 9 10 11 12

>> c = a + b

```
c =
    7 9 11 13 15 17 19
>> x = [1 2 3];
>> y = [3 4 5];
>> z = x.*y
z =
    3 8 15
```

Operator dalam MATLAB didefinisikan dalam Tabel 2

Simbol	Operasi
*	Perkalian
/	Pembagian
+	Penjumlahan
_	Pengurangan
^	Pangkat
.*	Perkalian setiap elemen di dalam array
./	Pembagian setiap elemen di dalam array
. ^	Pemangkatan setiap elemen di dalam array

Table 2: Operator dalam MATLAB

Matrik (Array)

Membuat array dengan MATLAB, sebagai contoh:

>> B = [1 2 3 4; 5 6 7 8; 9 10 11 12]

B =

Note:

Perintah-perintah yang dapat digunakan untuk membangun matriks dalam MATLAB didefinisikan dalam Tabel 3

Operasi Matrik

Operasi perkalian matreik mengikuti aturan perkalian sebuah matrik. Sebagai contoh:

>> c = [1 10 20 30]; >> B*c Note:

Table 3: Perintah membangun matrik

Perintah	Fungsi			
eye	matrik identitas			
zeros	matrik dengan semua elemen bilangan 0			
ones	matrik dengan semua elemen bilangan 1			
diag	diagonal matrik			
triu	matrik upper-triangular			
tril	matrik lower-triangular			
repmat	duplikasi matrik			
inv	inverse matrik			
det	determinan matrik			
sum	menjumlah setiap elemen kolom dari matrik			
eig	eigenvalue dan eigenvektor dari matrik			

ans =
??? Error using ==> mtimes
Inner matrix dimensions must agree.

Pesan error ini disebabkan oleh dimensi kedua matrik untuk operasi perkalian tidak sesuai, matrik B berdimensi 3×4 sedangkan matrik c berdimensi 1×4 . Agar dimensi kedua matrik bersesuaian, operasi transpose harus dilakukan pada matrik c sebagai berikut:

```
>> c = [ 1 10 20 30 ];
>> B*c'
ans =
    201
    445
    689
```

```
>> help sum
>> sum(B)
ans =
    15 18 21 24
```

Control Flow

Note:

MATLAB mengenal dua macam cara untuk melakukan proses looping atau iterasi, yaitu: for loop dan while loop dan dua macam cara untuk melakukan seleksi, yaitu: *if-else* dan *switch case*.

For loop memungkinkan sekelompok perintah diulang sebanyak suatu jumlah yang tetap. Contoh:

Bagaimana hasil dari contoh script di bawah ini?

```
>> clear all
>> B = [[1 2 3]' [3 2 1]' [2 1 3]']
>> for j=2:3,
for i=j:3, B(i,:) = B(i,:) - B(j-1,:)*B(i,j-1)/B(j-1,j-1); end end
```

While loop akan melakukan perulangan (iterasi) secara terus menerus sampai suatu kondisi tertentu dipenuhi. Contoh:

```
>> i=0;
while i<5 disp(i); i=i+1; end
0
1
2
3
```

4

Bagaimana hasil dari contoh script di bawah ini, jika diketahui sebuah persamaan differential y' = x - |y|, y(0) = 1 diaproksimasi dengan metoda Euler?

```
>> h = 0.001;
>> x = [0:h:2];
>> y = 0*x;
>> y(1) = 1;
>> i = 1;
>> size(x)
>> max(size(x))
>> while(i<max(size(x)))
y(i+1) = y(i) + h*(x(i)-abs(y(i))); i = i + 1; end
>> plot(x,y,'go')
>> plot(x,y)
```

Switch melakukan pemilihan berdasarkan masing-masing case yang telah didefinisikan. Sebagai contoh, ketikkan code berikut ini ke dalam m-file dan lihatlah hasilnya.

```
bilangan=5; x=rem(bilangan,2); switch(x)
case 1
    disp(['bilangan',num2str(bilangan),...
        'adalah bilangan ganjil'])
case 2
    disp(['bilangan',num2str(bilangan),...
        'adalah bilangan genap'])
otherwise
    disp('Bilangan tidak mungkin ada')
end
```

If-Else melakukan pemilihan berdasarkanhasil tes rasional. Sebagai contoh, ketikkan code berikut ini ke dalam m-file dan lihatlah hasilnya:

```
a = 4; b = 4; if (a<b)
    j = -1;
else if (a>b)
    j = 2;
else
    j = 3
end
```

Plotting

Note:

Salah satu keunggulan MATLAB dibandingkan dengan bahasa pemrograman lain adalah kemampuannya untuk menghasilkan plotting grafik hasil simulasi dengan tingkat keakuratan yang cukup tinggi. Sebagai contoh, ketikkan code berikut ini ke dalam m-file dan lihatlah hasilnya: Kedua gambar hasil dari plotting di atas dapat digabungkan ke dalam satu buah frame dengan perintah subplot.

figure(3); subplot(1,2,1); plot(x,y,'go',x,true) subplot(1,2,2); plot(x,abs(true-y),'mx')

Lanjutkan dengan mengetikkan code MATLAB di bawah ini:

```
clf h = h/2; x1 = 0:h:1; y1 = 0*x1; y1(1) = 1;
```

```
for i=2:max(size(y1)),
    y1(i) = y1(i-1) + h/y1(i-1);
end true1 = sqrt(2*x1+1);
```

```
plot(x1,y1,'go',x1,true1) plot(x1,abs(true1-y1),'mx')
subplot(1,2,1); plot(x,abs(true-y),'mx') subplot(1,2,2);
plot(x1,abs(true1-y1),'mx')
```

```
title('Errors for h=1/32') xlabel('x'); ylabel('|Error|');
subplot(1,2,1); xlabel('x'); ylabel('|Error|');
```

```
title('Errors forh=1/16')
```

Tipe garis, simbol dan warna yang dapat digunakan dalam MATLAB ditunjukkan dalam Tabel 4

Function

Note:

Sebuah *function* ditulis dalam m-file dengan nama file sama dengan nama function. Sebagai contoh:

b	blue		point	-	solid
g	green	0	circle	:	dotted
r	red	x	x-mark		dash-dot
c	cyan	+	plus	_	dashed
m	magenta	*	star	(none)	no line
у	yellow	s	square		
b	black	d	diamond		
		v	triangle (down)		
		~	triangle (up)		
		<	triangle (left)		
		>	triangle (right)		
		p	pentagram		
		h	hexagram		

Table 4: Tipe garis, simbol dan warna

```
function [x]=jumlah(a,b)
```

```
\% Fungsi ini melakukan penjumlahan a dan b<br/> x=a+b;
```

Pada MATLAB window command panggil fungsi tersebut:

```
>> help jumlah
Fungsi ini melakukan penjumlahan a dan b
>> a=5;
>> b=7;
>> hasil = jumlah(a,b)
hasil =
12
```

LATIHAN

- 1. Jika diketahui konversi dari Fahrenheit ke Celcius adalah C = (F 32) * 5/9, tentukan nilai celcius untuk suhu 30°F sampai 200°F! Kemudian lakukan plotting untuk kedua buah grafik Celcius dan Fahrenheit!
- 2. Sekelompok mahasiswa memiliki nilai angka sebagai berikut: 35, 56, 78, 97, 67, 45, 85, 77, 62, 40. Konversikan nilai angka tersebut ke nilai huruf jika diketahui: $E < 50, 50 < D \le 60, 60 < C \le 70, 70 < B \le 80$ dan A > 80.