Pembahasan Soal Metode Numerik

Soal f(x)=x^3-3x^2-x+3

Carilah akar-akar persamaan dari fungsi diatas dengan menggunakan beberapa metode sebagai berikut :

a.  Metode Bisection, dengan nilai awal Xn = 2 dan Xn+1 =5.

b.  Metode Interpolasi, dengan nilai awal Xn = 2 dan Xn+1 = 5.

c. Metode Newton – Rapshon, dengan nilai Xi = -4

Pembahasan :

a. Metode Bisection dengan nilai awal Xn = 2 dan Xn+1 =5.

iterasi Xn Xn+1 Xt f(Xn) f(Xn+1) f(Xt)
1 2 5 3.5 -3 48 5.625
2 2 3.5 2.75 -3 5.625 -1.64063
3 2.75 3.5 3.125 -1.64063 5.625 1.095703
4 2.75 3.125 2.9375 -1.64063 1.095703 -0.47681
5 2.9375 3.125 3.03125 -0.47681 1.095703 0.25589
6 2.9375 3.03125 2.984375 -0.47681 0.25589 -0.12354
7 2.984375 3.03125 3.007813 -0.12354 0.25589 0.062867
8 2.984375 3.007813 2.996094 -0.12354 0.062867 -0.03116
9 2.996094 3.007813 3.001953 -0.03116 0.062867 0.015648
10 2.996094 3.001953 2.999023 -0.03116 0.015648 -0.00781
11 2.999023 3.001953 3.000488 -0.00781 0.015648 0.003908
12 2.999023 3.000488 2.999756 -0.00781 0.003908 -0.00195
13 2.999756 3.000488 3.000122 -0.00195 0.003908 0.000977
14 2.999756 3.000122 2.999939 -0.00195 0.000977 -0.00049

b. Metode Interpolasi Linear dengan nilai awal Xn = 2 dan Xn+1 =5.

iterasi Xn Xn+1 X* f(Xn) f(Xn+1) f(X*)
1 2 5 2.176471 -3 48 -3.07755
2 2.176471 5 2.346595 -3.07755 48 -2.94457
3 2.346595 5 2.499961 -2.94457 48 -2.62511
4 2.499961 5 2.629598 -2.62511 48 -2.19085
5 2.629598 5 2.733067 -2.19085 48 -1.72697
6 2.733067 5 2.811795 -1.72697 48 -1.29978
7 2.811795 5 2.869487 -1.29978 48 -0.94413
8 2.869487 5 2.910584 -0.94413 48 -0.66807
9 2.910584 5 2.939266 -0.66807 48 -0.46397
10 2.939266 5 2.958994 -0.46397 48 -0.31803
11 2.958994 5 2.972428 -0.31803 48 -0.21604
12 2.972428 5 2.981513 -0.21604 48 -0.14586
13 2.981513 5 2.987627 -0.14586 48 -0.09806
14 2.987627 5 2.99173 -0.09806 48 -0.06575
15 2.99173 5 2.994477 -0.06575 48 -0.044
16 2.994477 5 2.996314 -0.044 48 -0.02941
17 2.996314 5 2.997541 -0.02941 48 -0.01964
18 2.997541 5 2.99836 -0.01964 48 -0.01311
19 2.99836 5 2.998906 -0.01311 48 -0.00874
20 2.998906 5 2.999271 -0.00874 48 -0.00583
21 2.999271 5 2.999514 -0.00583 48 -0.00389
22 2.999514 5 2.999676 -0.00389 48 -0.00259
23 2.999676 5 2.999784 -0.00259 48 -0.00173
24 2.999784 5 2.999856 -0.00173 48 -0.00115
25 2.999856 5 2.999904 -0.00115 48 -0.00077

c. Metode Newton Raphson dengan nilai awal Xi = -4.

Turunan pertama dari f(x)=x^3-3x^2-x+3 adalah f'(x) = 3x^2-6x-1

iterasi Xi Xi+1 f(Xi) f(Xi+1) f'(X)
1 -4 -2.52113 -105 -29.5716 71
2 -2.52113 -1.63028 -29.5716 -7.67617 33.195
3 -1.63028 -1.17214 -7.67617 -1.56005 16.75515
4 -1.17214 -1.01851 -1.56005 -0.15018 10.15463
5 -1.01851 -1.00025 -0.15018 -0.00201 8.223197
6 -1.00025 -1 -0.00201 -3.8E-07 8.00302

2 Responses to Pembahasan Soal Metode Numerik

  1. uggs cheap says:

    I have seen many useful factors on your web page about desktops. However, I have got the view that netbooks are still not quite powerful more than enough to be a sensible choice if you normally do things that require lots of power, for instance video croping and editing. But for internet surfing, microsoft word processing, and the majority of other prevalent computer work they are all right, provided you may not mind the tiny screen size. Many thanks for sharing your ideas.

  2. khumairotul zahro says:

    Thank’s

Leave a Reply

Your email address will not be published. Required fields are marked *

Skip to toolbar