Pembahasan Soal Metode Numerik
Soal f(x)=x^3-3x^2-x+3
Carilah akar-akar persamaan dari fungsi diatas dengan menggunakan beberapa metode sebagai berikut :
a. Metode Bisection, dengan nilai awal Xn = 2 dan Xn+1 =5.
b. Metode Interpolasi, dengan nilai awal Xn = 2 dan Xn+1 = 5.
c. Metode Newton – Rapshon, dengan nilai Xi = -4
Pembahasan :
a. Metode Bisection dengan nilai awal Xn = 2 dan Xn+1 =5.
iterasi | Xn | Xn+1 | Xt | f(Xn) | f(Xn+1) | f(Xt) |
1 | 2 | 5 | 3.5 | -3 | 48 | 5.625 |
2 | 2 | 3.5 | 2.75 | -3 | 5.625 | -1.64063 |
3 | 2.75 | 3.5 | 3.125 | -1.64063 | 5.625 | 1.095703 |
4 | 2.75 | 3.125 | 2.9375 | -1.64063 | 1.095703 | -0.47681 |
5 | 2.9375 | 3.125 | 3.03125 | -0.47681 | 1.095703 | 0.25589 |
6 | 2.9375 | 3.03125 | 2.984375 | -0.47681 | 0.25589 | -0.12354 |
7 | 2.984375 | 3.03125 | 3.007813 | -0.12354 | 0.25589 | 0.062867 |
8 | 2.984375 | 3.007813 | 2.996094 | -0.12354 | 0.062867 | -0.03116 |
9 | 2.996094 | 3.007813 | 3.001953 | -0.03116 | 0.062867 | 0.015648 |
10 | 2.996094 | 3.001953 | 2.999023 | -0.03116 | 0.015648 | -0.00781 |
11 | 2.999023 | 3.001953 | 3.000488 | -0.00781 | 0.015648 | 0.003908 |
12 | 2.999023 | 3.000488 | 2.999756 | -0.00781 | 0.003908 | -0.00195 |
13 | 2.999756 | 3.000488 | 3.000122 | -0.00195 | 0.003908 | 0.000977 |
14 | 2.999756 | 3.000122 | 2.999939 | -0.00195 | 0.000977 | -0.00049 |
b. Metode Interpolasi Linear dengan nilai awal Xn = 2 dan Xn+1 =5.
iterasi | Xn | Xn+1 | X* | f(Xn) | f(Xn+1) | f(X*) |
1 | 2 | 5 | 2.176471 | -3 | 48 | -3.07755 |
2 | 2.176471 | 5 | 2.346595 | -3.07755 | 48 | -2.94457 |
3 | 2.346595 | 5 | 2.499961 | -2.94457 | 48 | -2.62511 |
4 | 2.499961 | 5 | 2.629598 | -2.62511 | 48 | -2.19085 |
5 | 2.629598 | 5 | 2.733067 | -2.19085 | 48 | -1.72697 |
6 | 2.733067 | 5 | 2.811795 | -1.72697 | 48 | -1.29978 |
7 | 2.811795 | 5 | 2.869487 | -1.29978 | 48 | -0.94413 |
8 | 2.869487 | 5 | 2.910584 | -0.94413 | 48 | -0.66807 |
9 | 2.910584 | 5 | 2.939266 | -0.66807 | 48 | -0.46397 |
10 | 2.939266 | 5 | 2.958994 | -0.46397 | 48 | -0.31803 |
11 | 2.958994 | 5 | 2.972428 | -0.31803 | 48 | -0.21604 |
12 | 2.972428 | 5 | 2.981513 | -0.21604 | 48 | -0.14586 |
13 | 2.981513 | 5 | 2.987627 | -0.14586 | 48 | -0.09806 |
14 | 2.987627 | 5 | 2.99173 | -0.09806 | 48 | -0.06575 |
15 | 2.99173 | 5 | 2.994477 | -0.06575 | 48 | -0.044 |
16 | 2.994477 | 5 | 2.996314 | -0.044 | 48 | -0.02941 |
17 | 2.996314 | 5 | 2.997541 | -0.02941 | 48 | -0.01964 |
18 | 2.997541 | 5 | 2.99836 | -0.01964 | 48 | -0.01311 |
19 | 2.99836 | 5 | 2.998906 | -0.01311 | 48 | -0.00874 |
20 | 2.998906 | 5 | 2.999271 | -0.00874 | 48 | -0.00583 |
21 | 2.999271 | 5 | 2.999514 | -0.00583 | 48 | -0.00389 |
22 | 2.999514 | 5 | 2.999676 | -0.00389 | 48 | -0.00259 |
23 | 2.999676 | 5 | 2.999784 | -0.00259 | 48 | -0.00173 |
24 | 2.999784 | 5 | 2.999856 | -0.00173 | 48 | -0.00115 |
25 | 2.999856 | 5 | 2.999904 | -0.00115 | 48 | -0.00077 |
c. Metode Newton Raphson dengan nilai awal Xi = -4.
Turunan pertama dari f(x)=x^3-3x^2-x+3 adalah f'(x) = 3x^2-6x-1
iterasi | Xi | Xi+1 | f(Xi) | f(Xi+1) | f'(X) |
1 | -4 | -2.52113 | -105 | -29.5716 | 71 |
2 | -2.52113 | -1.63028 | -29.5716 | -7.67617 | 33.195 |
3 | -1.63028 | -1.17214 | -7.67617 | -1.56005 | 16.75515 |
4 | -1.17214 | -1.01851 | -1.56005 | -0.15018 | 10.15463 |
5 | -1.01851 | -1.00025 | -0.15018 | -0.00201 | 8.223197 |
6 | -1.00025 | -1 | -0.00201 | -3.8E-07 | 8.00302 |
I have seen many useful factors on your web page about desktops. However, I have got the view that netbooks are still not quite powerful more than enough to be a sensible choice if you normally do things that require lots of power, for instance video croping and editing. But for internet surfing, microsoft word processing, and the majority of other prevalent computer work they are all right, provided you may not mind the tiny screen size. Many thanks for sharing your ideas.
Thank’s