

Sum	mary	
BJT Characteristics	• the transistor	· shown?
Solution:	I _C (mA)	
Choose a base current near the	10.0 -	$I_{BS} = 60 \mu A$ $I_{BS} = 50 \mu A$
center of the range – in this case I_{P2} which is 30 µA.	8.0 -	$I_{B4} = 40 \mu A$
Read the corresponding	6.0	$I_{B3} = 30 \mu A$
collector current – in this case, 5.0 mA. Calculate the ratio:	4.0	$I_{B2} = 20 \mu A$ $I_{B1} = 10 \mu A$
$\beta_{\rm PC} = \frac{I_{\rm C}}{I_{\rm C}} = \frac{5.0 \text{ mA}}{I_{\rm C}} = 167$	2.0	J ₀ =0
$I_{\rm B}$ 30 μ A		

Data Sheets						
Data sheets give ma	anufacturer's	specificati	ions for m	aximu	m ope	rating
conditions, thermal	, and electrica	al characte	eristics. Fo	r exan	ple, a	n
						1 chow
electrical characteri	istic is β_{DC} , we data sheet f	hich is giv	en as $h_{\rm FE}$.	1 ne 2	mA	+ SHOW
electrical characteri a range of β's on th	istic is β_{DC} , we data sheet f	which is give from 100 to	ven as h _{FE} . o 300 for h	$T_{\rm C} = 10$	mA.	+ 5110 v
electrical characteria a range of β 's on th	istic is β _{DC} , w e data sheet f	which is give from 100 to	yen as $h_{\rm FE}$. o 300 for $h_{\rm Symbol}$	$\frac{1 \text{ he } 2}{C} = 10$	mA.	t SHOV
electrical characteria a range of β 's on th ONCharacteristics DC current gain ($I_C = 0.1 \text{ mAdc}, V_{CE} = 1.$	istic is β _{DC} , w e data sheet f Characteristic	2N3903 2N3904	ven as h _{FE} . o 300 for h symbol	Ine 2 C = 10 Min 20 40	Max	Unit
$\begin{array}{c} \textbf{Clectrical characteria}\\ \textbf{a range of } \beta \text{'s on th}\\ \hline \textbf{ON Characteristics}\\ \hline \textbf{DC current gain}\\ (l_c=0.1 \text{ mAde, } v_{c_E}=1.\\ (l_c=1.0 \text{ mAde, } v_{c_E}=1.\\ \hline \textbf{Clectrical}\\ Clectri$	istic is β _{DC} , w e data sheet f <u>Characteristic</u> 0 Vdc) 0 Vdc)	2N3903 2N3904 2N3904	ven as h _{FE}	$\frac{1 \text{ he } 2}{C} = 10$ $\frac{Min}{40}$ $\frac{20}{40}$ $\frac{35}{70}$	Max	Unit
electrical characteria a range of β 's on th ON Characteristics DC Americania ($f_c = 0.1 \text{ mAde}, V_{CE} = 1.$ ($f_c = 1.0 \text{ mAde}, V_{CE} = 1.$ ($f_c = 1.0 \text{ mAde}, V_{CE} = 1.$	istic is β _{DC} , we data sheet f	2N3903 2N3904 2N3904 2N3904 2N3904 2N3904	yen as h _{FE} .	$\frac{1 \text{ he } 2}{C} = 10$ $\frac{Min}{40}$ $\frac{20}{35}$ $\frac{50}{100}$	Max	Unit
electrical characteria a range of β 's on th OC conversions $C_{c} = 0.1 \text{ mAdc}, V_{cr} = 1.$ $(I_c = 10 \text{ mAdc}, V_{cr} = 1.$ $(I_c = 10 \text{ mAdc}, V_{cr} = 1.)$ $(I_c = 50 \text{ mAdc}, V_{cr} = 1.)$	istic is β _{DC} , we data sheet f	2N3903 2N3904 2N3904 2N3904 2N3904 2N3904 2N3904 2N3904 2N3904	yen as h _{FE} .	$\frac{1 \text{ ne } 2}{1 \text{ c}} = 10$ $\frac{20}{40}$ $\frac{20}{40}$ $\frac{35}{70}$ $\frac{50}{100}$ $\frac{30}{60}$	Max 	Unit

	Selected Key Terms
BJT (bipolar junction transistor)	a transistor constructed with three doped semiconductor regions separated by two <i>pn</i> junctions.
Emitter	the most heavily doped of the three semiconductor regions of a BJT.
Base	one of the three semiconductor regions of a BJT. The base is thin and lightly doped compared to the other regions.
Collector	the largest of the three semiconductor regions of a BJT.
lectronic Devices, 9th edition homas L. Floyd	© 2012 Pearson Education. Upper Saddle River, NJ, 07450 All rights reserved.

Selected Key Terms		
Beta	the ratio of dc collector current to the dc base current in a BJT; current gain from base to collector.	
Saturation	the state of a BJT in which the collector current has reached a maximum and is independent of the base current.	
Cutoff	the nonconducting state of a transistor.	
Phototransistor	a transistor in which base current is produced when like strikes the photosensitive semiconductor base region.	
ronic Devices, 9th edition	6 2012 Pearson Education. Upper Saddle River, NJ, 07458. All rights reserved.	

