
1

PERTEMUAN 2

1

TUJUAN

 Mahasiswa dapat menjelaskan tentang

model data, arsitektur dan kebebasan

data dalam basis data serta bahasa,

interface dan klasifikasi DBMS

Slide 2- 2



2

Slide 2- 3

Database System Concepts and Architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. 

Navathe



3

Outline

 Data Models and Their Categories

 Schemas, Instances, and States

 Three-Schema Architecture

 Data Independence

 DBMS Languages and Interfaces

 Database System Utilities and Tools

 Centralized and Client-Server 
Architectures

 Classification of DBMSs

Slide 2- 5

Data Models

 Data Model:

 A set of concepts to describe the structure of a 

database, the operations for manipulating these 

structures, and certain constraints that the database 

should obey.

 Data Model Structure and Constraints:

 Constructs are used to define the database structure

 Constructs typically include elements (and their data 

types) as well as groups of elements (e.g. entity, 

record, table), and relationships among such groups

 Constraints specify some restrictions on valid data; 

these constraints must be enforced at all times

Slide 2- 6



4

Data Models (continued)

 Data Model Operations:

 These operations are used for specifying 

database retrievals and updates by referring 

to the constructs of the data model.

 Operations on the data model may include 

basic model operations (e.g. generic 

insert, delete, update) and user-defined 

operations (e.g. compute_student_gpa, 

update_inventory)

Slide 2- 7

Categories of Data Models

 Conceptual (high-level, semantic) data models:

 Provide concepts that are close to the way many users 
perceive data. 

○ (Also called entity-based or object-based data models.)

 Physical (low-level, internal) data models:

 Provide concepts that describe details of how data is 
stored in the computer. These are usually specified in an 
ad-hoc manner through DBMS design and administration 
manuals

 Implementation (representational) data models:

 Provide concepts that fall between the above two, used 
by many commercial DBMS implementations (e.g. 
relational data models used in many commercial 
systems).

Slide 2- 8



5

Schemas versus Instances

 Database Schema:

 The description of a database.

 Includes descriptions of the database structure, 
data types, and the constraints on the 
database.

 Schema Diagram:
 An illustrative display of (most aspects of) a 

database schema.

 Schema Construct:

 A component of the schema or an object 
within the schema, e.g., STUDENT, COURSE.

Slide 2- 9

Schemas versus Instances

 Database State:

 The actual data stored in a database at a 

particular moment in time. This includes 

the collection of all the data in the database.

 Also called database instance (or 

occurrence or snapshot).

○ The term instance is also applied to individual 

database components, e.g. record instance, 

table instance, entity instance

Slide 2- 10



6

Database Schema vs. Database State

 Database State: 

 Refers to the content of a database at a 

moment in time.

 Initial Database State:

 Refers to the database state when it is 

initially loaded into the system.

 Valid State:

 A state that satisfies the structure and 

constraints of the database.

Slide 2- 11

Database Schema vs. Database State

 Distinction

 The database schema changes very 

infrequently. 

 The database state changes every time the 

database is updated. 

 Schema is also called intension.

 State is also called extension.

Slide 2- 12



7

Example of a Database Schema

Slide 2- 13

Example of a database state

Slide 2- 14



8

Three-Schema Architecture

 Proposed to support DBMS 

characteristics of:

 Program-data independence.

 Support of multiple views of the data.

 Not explicitly used in commercial DBMS 

products, but has been useful in 

explaining database system 

organization

Slide 2- 15

Three-Schema Architecture

 Defines DBMS schemas at three levels:

 Internal schema at the internal level to describe physical 

storage structures and access paths (e.g indexes). 

○ Typically uses a physical data model.

 Conceptual schema at the conceptual level to describe the 

structure and constraints for the whole database for a 

community of users. 

○ Uses a conceptual or an implementation data model.

 External schemas at the external level to describe the 

various user views. 

○ Usually uses the same data model as the conceptual 

schema.

Slide 2- 16



9

The three-schema architecture

Slide 2- 17

Three-Schema Architecture

 Mappings among schema levels are 

needed to transform requests and data. 

 Programs refer to an external schema, and 

are mapped by the DBMS to the internal 

schema for execution.

 Data extracted from the internal DBMS level 

is reformatted to match the user’s external 

view (e.g. formatting the results of an SQL 

query for display in a Web page)

Slide 2- 18



10

Data Independence

 Logical Data Independence: 

 The capacity to change the conceptual 
schema without having to change the 
external schemas and their associated 
application programs.

 Physical Data Independence:
 The capacity to change the internal schema 

without having to change the conceptual 
schema.

 For example, the internal schema may be 
changed when certain file structures are 
reorganized or new indexes are created to 
improve database performance

Slide 2- 19

Data Independence (continued)

 When a schema at a lower level is 
changed, only the mappings between 
this schema and higher-level schemas 
need to be changed in a DBMS that fully 
supports data independence.

 The higher-level schemas themselves 
are unchanged.

 Hence, the application programs need not 
be changed since they refer to the external 
schemas.

Slide 2- 20



11

DBMS Languages

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

 High-Level or Non-procedural Languages: 

These include the relational language SQL

○ May be used in a standalone way or may be 

embedded in a programming language

 Low Level or Procedural Languages:

○ These must be embedded in a programming 

language

Slide 2- 21

DBMS Languages

 Data Definition Language (DDL): 

 Used by the DBA and database designers to 
specify the conceptual schema of a database.

 In many DBMSs, the DDL is also used to define 
internal and external schemas (views).

 In some DBMSs, separate storage definition 
language (SDL) and view definition language 
(VDL) are used to define internal and external 
schemas.

○ SDL is typically realized via DBMS commands 
provided to the DBA and database designers

Slide 2- 22



12

DBMS Languages

 Data Manipulation Language (DML):

 Used to specify database retrievals and updates

 DML commands (data sublanguage) can be 

embedded in a general-purpose programming 

language (host language), such as COBOL, C, 

C++, or Java.

○ A library of functions can also be provided to 

access the DBMS from a programming language

 Alternatively, stand-alone DML commands can 

be applied directly (called a query language).

Slide 2- 23

Types of DML

 High Level or Non-procedural Language:

 For example, the SQL relational language

 Are “set”-oriented and specify what data to 

retrieve rather than how to retrieve it. 

 Also called declarative languages.

 Low Level or Procedural Language:

 Retrieve data one record-at-a-time; 

 Constructs such as looping are needed to retrieve 

multiple records, along with positioning pointers.

Slide 2- 24



13

DBMS Interfaces

 Stand-alone query language interfaces

 Example: Entering SQL queries at the 

DBMS interactive SQL interface (e.g. 

SQL*Plus in ORACLE)

 Programmer interfaces for embedding 

DML in programming languages

 User-friendly interfaces

 Menu-based, forms-based, graphics-based, 

etc.

Slide 2- 25

DBMS Programming Language Interfaces

 Programmer interfaces for embedding 

DML in a programming languages:

 Embedded Approach: e.g embedded SQL 

(for C, C++, etc.), SQLJ (for Java)

 Procedure Call Approach: e.g. JDBC for 

Java, ODBC for other programming 

languages

 Database Programming Language 

Approach: e.g. ORACLE has PL/SQL, a 

programming language based on SQL; 

language incorporates SQL and its data 

types as integral components
Slide 2- 26



14

User-Friendly DBMS 

Interfaces

 Menu-based, popular for browsing on the 

web

 Forms-based, designed for naïve users

 Graphics-based 

○ (Point and Click, Drag and Drop, etc.)

 Natural language: requests in written 

English

 Combinations of the above:

○ For example, both menus and forms used 

extensively in Web database interfaces
Slide 2- 27

Other DBMS Interfaces

 Speech as Input and Output

 Web Browser as an interface

 Parametric interfaces, e.g., bank tellers 

using function keys.

 Interfaces for the DBA:

○ Creating user accounts, granting 

authorizations

○ Setting system parameters

○ Changing schemas or access paths

Slide 2- 28



15

Database System Utilities

 To perform certain functions such as:

 Loading data stored in files into a database. 

Includes data conversion tools.

 Backing up the database periodically on 

tape.

 Reorganizing database file structures.

 Report generation utilities.

 Performance monitoring utilities.

 Other functions, such as sorting, user 

monitoring, data compression, etc.

Slide 2- 29

Other Tools

 Data dictionary / repository:

 Used to store schema descriptions and 

other information such as design decisions, 

application program descriptions, user 

information, usage standards, etc.

 Active data dictionary is accessed by 

DBMS software and users/DBA.

 Passive data dictionary is accessed by 

users/DBA only.

Slide 2- 30



16

Other Tools

 Application Development Environments 

and CASE (computer-aided software 

engineering) tools:

 Examples:

 PowerBuilder (Sybase)

 JBuilder (Borland)

 JDeveloper 10G (Oracle)

Slide 2- 31

Typical DBMS Component 

Modules

Slide 2- 32



17

Centralized and Client-Server DBMS 

Architectures 

 Centralized DBMS:

 Combines everything into single system 

including- DBMS software, hardware, 

application programs, and user interface 

processing software.

 User can still connect through a remote 

terminal – however, all processing is done at 

centralized site.

Slide 2- 33

A Physical Centralized Architecture

Slide 2- 34



18

Basic 2-tier Client-Server Architectures

 Specialized Servers with Specialized 

functions

 Print server

 File server

 DBMS server

 Web server

 Email server

 Clients can access the specialized 

servers as needed

Slide 2- 35

Logical two-tier client server architecture

Slide 2- 36



19

Clients

 Provide appropriate interfaces through a 

client software module to access and 

utilize the various server resources. 

 Clients may be diskless machines or 

PCs or Workstations with disks with only 

the client software installed.

 Connected to the servers via some form 

of a network.

 (LAN: local area network, wireless network, 

etc.)

Slide 2- 37

DBMS Server

 Provides database query and transaction services 
to the clients

 Relational DBMS servers are often called SQL 
servers, query servers, or transaction servers

 Applications running on clients utilize an 
Application Program Interface (API) to access 
server databases via standard interface such as:
 ODBC: Open Database Connectivity standard

 JDBC: for Java programming access

 Client and server must install appropriate client 
module and server module software for ODBC or 
JDBC

 See Chapter 9

Slide 2- 38



20

Two Tier Client-Server Architecture

 A client program may connect to several 

DBMSs, sometimes called the data sources.

 In general, data sources can be files or other 

non-DBMS software that manages data.

 Other variations of clients are possible: e.g., 

in some object DBMSs, more functionality is 

transferred to clients including data 

dictionary functions, optimization and 

recovery across multiple servers, etc.

Slide 2- 39

Three Tier Client-Server Architecture

 Common for Web applications

 Intermediate Layer called Application Server or 

Web Server: 

 Stores the web connectivity software and the 

business logic part of the application used to access 

the corresponding data from the database server

 Acts like a conduit for sending partially processed 

data between the database server and the client.

 Three-tier Architecture Can Enhance Security: 

 Database server only accessible via middle tier

 Clients cannot directly access database server

Slide 2- 40



21

Three-tier client-server architecture

Slide 2- 41

Classification of DBMSs

 Based on the data model used
 Traditional: Relational, Network, 

Hierarchical.

 Emerging: Object-oriented, Object-relational.

 Other classifications
 Single-user (typically used with personal 

computers)
vs. multi-user (most DBMSs).

 Centralized (uses a single computer with 
one database) 
vs. distributed (uses multiple computers, 
multiple databases) 

Slide 2- 42



22

Variations of Distributed DBMSs 

(DDBMSs)
 Homogeneous DDBMS

 Heterogeneous DDBMS

 Federated or Multidatabase Systems

 Distributed Database Systems have now 

come to be known as client-server 

based database systems because:

 They do not support a totally distributed 

environment, but rather a set of database 

servers supporting a set of clients.

Slide 2- 43

Cost considerations for DBMSs

 Cost Range: from free open-source systems to 
configurations costing millions of dollars

 Examples of free relational DBMSs: MySQL, 
PostgreSQL, others

 Commercial DBMS offer additional specialized 
modules, e.g. time-series module, spatial data 
module, document module, XML module

 These offer additional specialized functionality when 
purchased separately

 Sometimes called cartridges (e.g., in Oracle) or 
blades

 Different licensing options: site license, maximum 
number of concurrent users (seat license), single 
user, etc.

Slide 2- 44


