
1

PERTEMUAN 2

1

TUJUAN

 Mahasiswa dapat menjelaskan tentang

model data, arsitektur dan kebebasan

data dalam basis data serta bahasa,

interface dan klasifikasi DBMS

Slide 2- 2



2

Slide 2- 3

Database System Concepts and Architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. 

Navathe



3

Outline

 Data Models and Their Categories

 Schemas, Instances, and States

 Three-Schema Architecture

 Data Independence

 DBMS Languages and Interfaces

 Database System Utilities and Tools

 Centralized and Client-Server 
Architectures

 Classification of DBMSs

Slide 2- 5

Data Models

 Data Model:

 A set of concepts to describe the structure of a 

database, the operations for manipulating these 

structures, and certain constraints that the database 

should obey.

 Data Model Structure and Constraints:

 Constructs are used to define the database structure

 Constructs typically include elements (and their data 

types) as well as groups of elements (e.g. entity, 

record, table), and relationships among such groups

 Constraints specify some restrictions on valid data; 

these constraints must be enforced at all times

Slide 2- 6



4

Data Models (continued)

 Data Model Operations:

 These operations are used for specifying 

database retrievals and updates by referring 

to the constructs of the data model.

 Operations on the data model may include 

basic model operations (e.g. generic 

insert, delete, update) and user-defined 

operations (e.g. compute_student_gpa, 

update_inventory)

Slide 2- 7

Categories of Data Models

 Conceptual (high-level, semantic) data models:

 Provide concepts that are close to the way many users 
perceive data. 

○ (Also called entity-based or object-based data models.)

 Physical (low-level, internal) data models:

 Provide concepts that describe details of how data is 
stored in the computer. These are usually specified in an 
ad-hoc manner through DBMS design and administration 
manuals

 Implementation (representational) data models:

 Provide concepts that fall between the above two, used 
by many commercial DBMS implementations (e.g. 
relational data models used in many commercial 
systems).

Slide 2- 8



5

Schemas versus Instances

 Database Schema:

 The description of a database.

 Includes descriptions of the database structure, 
data types, and the constraints on the 
database.

 Schema Diagram:
 An illustrative display of (most aspects of) a 

database schema.

 Schema Construct:

 A component of the schema or an object 
within the schema, e.g., STUDENT, COURSE.

Slide 2- 9

Schemas versus Instances

 Database State:

 The actual data stored in a database at a 

particular moment in time. This includes 

the collection of all the data in the database.

 Also called database instance (or 

occurrence or snapshot).

○ The term instance is also applied to individual 

database components, e.g. record instance, 

table instance, entity instance

Slide 2- 10



6

Database Schema vs. Database State

 Database State: 

 Refers to the content of a database at a 

moment in time.

 Initial Database State:

 Refers to the database state when it is 

initially loaded into the system.

 Valid State:

 A state that satisfies the structure and 

constraints of the database.

Slide 2- 11

Database Schema vs. Database State

 Distinction

 The database schema changes very 

infrequently. 

 The database state changes every time the 

database is updated. 

 Schema is also called intension.

 State is also called extension.

Slide 2- 12



7

Example of a Database Schema

Slide 2- 13

Example of a database state

Slide 2- 14



8

Three-Schema Architecture

 Proposed to support DBMS 

characteristics of:

 Program-data independence.

 Support of multiple views of the data.

 Not explicitly used in commercial DBMS 

products, but has been useful in 

explaining database system 

organization

Slide 2- 15

Three-Schema Architecture

 Defines DBMS schemas at three levels:

 Internal schema at the internal level to describe physical 

storage structures and access paths (e.g indexes). 

○ Typically uses a physical data model.

 Conceptual schema at the conceptual level to describe the 

structure and constraints for the whole database for a 

community of users. 

○ Uses a conceptual or an implementation data model.

 External schemas at the external level to describe the 

various user views. 

○ Usually uses the same data model as the conceptual 

schema.

Slide 2- 16



9

The three-schema architecture

Slide 2- 17

Three-Schema Architecture

 Mappings among schema levels are 

needed to transform requests and data. 

 Programs refer to an external schema, and 

are mapped by the DBMS to the internal 

schema for execution.

 Data extracted from the internal DBMS level 

is reformatted to match the user’s external 

view (e.g. formatting the results of an SQL 

query for display in a Web page)

Slide 2- 18



10

Data Independence

 Logical Data Independence: 

 The capacity to change the conceptual 
schema without having to change the 
external schemas and their associated 
application programs.

 Physical Data Independence:
 The capacity to change the internal schema 

without having to change the conceptual 
schema.

 For example, the internal schema may be 
changed when certain file structures are 
reorganized or new indexes are created to 
improve database performance

Slide 2- 19

Data Independence (continued)

 When a schema at a lower level is 
changed, only the mappings between 
this schema and higher-level schemas 
need to be changed in a DBMS that fully 
supports data independence.

 The higher-level schemas themselves 
are unchanged.

 Hence, the application programs need not 
be changed since they refer to the external 
schemas.

Slide 2- 20



11

DBMS Languages

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

 High-Level or Non-procedural Languages: 

These include the relational language SQL

○ May be used in a standalone way or may be 

embedded in a programming language

 Low Level or Procedural Languages:

○ These must be embedded in a programming 

language

Slide 2- 21

DBMS Languages

 Data Definition Language (DDL): 

 Used by the DBA and database designers to 
specify the conceptual schema of a database.

 In many DBMSs, the DDL is also used to define 
internal and external schemas (views).

 In some DBMSs, separate storage definition 
language (SDL) and view definition language 
(VDL) are used to define internal and external 
schemas.

○ SDL is typically realized via DBMS commands 
provided to the DBA and database designers

Slide 2- 22



12

DBMS Languages

 Data Manipulation Language (DML):

 Used to specify database retrievals and updates

 DML commands (data sublanguage) can be 

embedded in a general-purpose programming 

language (host language), such as COBOL, C, 

C++, or Java.

○ A library of functions can also be provided to 

access the DBMS from a programming language

 Alternatively, stand-alone DML commands can 

be applied directly (called a query language).

Slide 2- 23

Types of DML

 High Level or Non-procedural Language:

 For example, the SQL relational language

 Are “set”-oriented and specify what data to 

retrieve rather than how to retrieve it. 

 Also called declarative languages.

 Low Level or Procedural Language:

 Retrieve data one record-at-a-time; 

 Constructs such as looping are needed to retrieve 

multiple records, along with positioning pointers.

Slide 2- 24



13

DBMS Interfaces

 Stand-alone query language interfaces

 Example: Entering SQL queries at the 

DBMS interactive SQL interface (e.g. 

SQL*Plus in ORACLE)

 Programmer interfaces for embedding 

DML in programming languages

 User-friendly interfaces

 Menu-based, forms-based, graphics-based, 

etc.

Slide 2- 25

DBMS Programming Language Interfaces

 Programmer interfaces for embedding 

DML in a programming languages:

 Embedded Approach: e.g embedded SQL 

(for C, C++, etc.), SQLJ (for Java)

 Procedure Call Approach: e.g. JDBC for 

Java, ODBC for other programming 

languages

 Database Programming Language 

Approach: e.g. ORACLE has PL/SQL, a 

programming language based on SQL; 

language incorporates SQL and its data 

types as integral components
Slide 2- 26



14

User-Friendly DBMS 

Interfaces

 Menu-based, popular for browsing on the 

web

 Forms-based, designed for naïve users

 Graphics-based 

○ (Point and Click, Drag and Drop, etc.)

 Natural language: requests in written 

English

 Combinations of the above:

○ For example, both menus and forms used 

extensively in Web database interfaces
Slide 2- 27

Other DBMS Interfaces

 Speech as Input and Output

 Web Browser as an interface

 Parametric interfaces, e.g., bank tellers 

using function keys.

 Interfaces for the DBA:

○ Creating user accounts, granting 

authorizations

○ Setting system parameters

○ Changing schemas or access paths

Slide 2- 28



15

Database System Utilities

 To perform certain functions such as:

 Loading data stored in files into a database. 

Includes data conversion tools.

 Backing up the database periodically on 

tape.

 Reorganizing database file structures.

 Report generation utilities.

 Performance monitoring utilities.

 Other functions, such as sorting, user 

monitoring, data compression, etc.

Slide 2- 29

Other Tools

 Data dictionary / repository:

 Used to store schema descriptions and 

other information such as design decisions, 

application program descriptions, user 

information, usage standards, etc.

 Active data dictionary is accessed by 

DBMS software and users/DBA.

 Passive data dictionary is accessed by 

users/DBA only.

Slide 2- 30



16

Other Tools

 Application Development Environments 

and CASE (computer-aided software 

engineering) tools:

 Examples:

 PowerBuilder (Sybase)

 JBuilder (Borland)

 JDeveloper 10G (Oracle)

Slide 2- 31

Typical DBMS Component 

Modules

Slide 2- 32



17

Centralized and Client-Server DBMS 

Architectures 

 Centralized DBMS:

 Combines everything into single system 

including- DBMS software, hardware, 

application programs, and user interface 

processing software.

 User can still connect through a remote 

terminal – however, all processing is done at 

centralized site.

Slide 2- 33

A Physical Centralized Architecture

Slide 2- 34



18

Basic 2-tier Client-Server Architectures

 Specialized Servers with Specialized 

functions

 Print server

 File server

 DBMS server

 Web server

 Email server

 Clients can access the specialized 

servers as needed

Slide 2- 35

Logical two-tier client server architecture

Slide 2- 36



19

Clients

 Provide appropriate interfaces through a 

client software module to access and 

utilize the various server resources. 

 Clients may be diskless machines or 

PCs or Workstations with disks with only 

the client software installed.

 Connected to the servers via some form 

of a network.

 (LAN: local area network, wireless network, 

etc.)

Slide 2- 37

DBMS Server

 Provides database query and transaction services 
to the clients

 Relational DBMS servers are often called SQL 
servers, query servers, or transaction servers

 Applications running on clients utilize an 
Application Program Interface (API) to access 
server databases via standard interface such as:
 ODBC: Open Database Connectivity standard

 JDBC: for Java programming access

 Client and server must install appropriate client 
module and server module software for ODBC or 
JDBC

 See Chapter 9

Slide 2- 38



20

Two Tier Client-Server Architecture

 A client program may connect to several 

DBMSs, sometimes called the data sources.

 In general, data sources can be files or other 

non-DBMS software that manages data.

 Other variations of clients are possible: e.g., 

in some object DBMSs, more functionality is 

transferred to clients including data 

dictionary functions, optimization and 

recovery across multiple servers, etc.

Slide 2- 39

Three Tier Client-Server Architecture

 Common for Web applications

 Intermediate Layer called Application Server or 

Web Server: 

 Stores the web connectivity software and the 

business logic part of the application used to access 

the corresponding data from the database server

 Acts like a conduit for sending partially processed 

data between the database server and the client.

 Three-tier Architecture Can Enhance Security: 

 Database server only accessible via middle tier

 Clients cannot directly access database server

Slide 2- 40



21

Three-tier client-server architecture

Slide 2- 41

Classification of DBMSs

 Based on the data model used
 Traditional: Relational, Network, 

Hierarchical.

 Emerging: Object-oriented, Object-relational.

 Other classifications
 Single-user (typically used with personal 

computers)
vs. multi-user (most DBMSs).

 Centralized (uses a single computer with 
one database) 
vs. distributed (uses multiple computers, 
multiple databases) 

Slide 2- 42



22

Variations of Distributed DBMSs 

(DDBMSs)
 Homogeneous DDBMS

 Heterogeneous DDBMS

 Federated or Multidatabase Systems

 Distributed Database Systems have now 

come to be known as client-server 

based database systems because:

 They do not support a totally distributed 

environment, but rather a set of database 

servers supporting a set of clients.

Slide 2- 43

Cost considerations for DBMSs

 Cost Range: from free open-source systems to 
configurations costing millions of dollars

 Examples of free relational DBMSs: MySQL, 
PostgreSQL, others

 Commercial DBMS offer additional specialized 
modules, e.g. time-series module, spatial data 
module, document module, XML module

 These offer additional specialized functionality when 
purchased separately

 Sometimes called cartridges (e.g., in Oracle) or 
blades

 Different licensing options: site license, maximum 
number of concurrent users (seat license), single 
user, etc.

Slide 2- 44


