
File Input and
Output

O b j e c t i v e s

After you have read and studied this chapter, you
should be able to

• Include a JFileChooser object in your program
to let the user specify a file.

• Write bytes to a file and read them back from
the file, using FileOutputStream and
FileInputStream.

• Write values of primitive data types to a file
and read them back from the file, using
DataOutput Stream and DataInputStream.

• Write text data to a file and read them back
from the file, using PrintWriter and
BufferedReader.

• Read a text file using Scanner.

• Write objects to a file and read them back from
the file, using ObjectOutputStream and
ObjectInputStream.

685

12

W
I n t r o d u c t i o n

686 Chapter 12 File Input and Output

hat is the most important action you should never forget to take while develop-
ing programs or writing documents? Saving the data, of course! It’s 3 A.M., and
you’re in the home stretch, applying the finishing touches to the term paper due
at 9 A.M. Just as you are ready to select the Print command for the final copy, it
happens. The software freezes and it won’t respond to your commands anymore.
You forgot to turn on the Autosave feature, and you have not saved the data for the
last hour. There’s nothing you can do but reboot the computer.

Data not saved will be lost, and if we ever want to work on the data again,
we must save the data to a file. We call the action of saving, or writing, data to a file
file output and the action of reading data from a file file input. A program we develop
must support some form of file input and output capabilities for it to have practical
uses. Suppose we develop a program that keeps track of bicycles owned by the
dorm students. The program will allow the user to add, delete, and modify the bicy-
cle information. If the program does not support the file input and output features,
every time the program is started, the user must reenter the data.

In this chapter, we will introduce the classes from the java.io and javax.swing
packages that are used for file input and output operations. Also, we will show how
the two helper classes from Chapters 8 and 9—Dorm and FileManager—that pro-
vided the file input and output support are implemented.

12.1 File and JFileChooser Objects
In this section we introduce two key objects for reading data from or writing data to
a file. We use the term file access to refer to both read and write operations. If we need
to be precise, we write read access or write access. (We use the terms save and write
interchangeably to refer to file output, but we do not say save access.) Suppose we
want to read the contents of a file sample.data. Before we can start reading data
from this file, we must first create a File object (from the java.io package) and asso-
ciate it to the file. We do so by calling a File constructor:

File inFile = new File("sample.data");

The argument to the constructor designates the name of the file to access. The sys-
tem assumes the file is located in the current directory. For the following examples,
we assume the directory structure shown in Figure 12.1, with Ch12 being the current
directory. When you run a program whose source file is located in directory X, then
the current directory is X. Please refer to Java compiler manuals for other options
for designating the current directory.

It is also possible to open a file that is stored in a directory other than the
current directory by providing a path name and a filename. Assuming there’s a file
xyz.data in the JavaPrograms directory, we can open it by executing

File inFile = new File("C:\\JavaPrograms", "xyz.data");

file output
and input

File

current
directory

This style of designating the path name is for the Windows platform. The actual
path name we want to specify is

C:\JavaPrograms

but the backslash character is an escape character. So to specify the backslash char-
acter itself, we must use double backslashes. For the UNIX platform, we use the
forward slash for a delimiter, for example,

"/JavaPrograms"

For the Mac platform, we also use a forward slash; for example, if the name of a
hard disk is MacHD, then we write

"/MacHD/JavaPrograms"

To maintain the consistency across the platforms, the forward slash character is
allowed for the Windows platform also, such as in

"C:/JavaPrograms/Ch12"

The path name could be absolute or relative to the current directory. The
absolute path name is the full path name beginning with the disk drive name, for
example,

"C:/JavaPrograms/Ch12"

The relative path name is relative to the current directory. For example, if the cur-
rent directory is Ch12, then the relative path name

"../Ch12"

12.1 File and JFileChooser Objects 687

JavaPrograms

Ch1

Ch2
•••

•••

•••
Ch12

C: drive

Current directory

Figure 12.1 Directory structure used for the examples in this section.We assume the Windows environment.

is equivalent to the full path name

"C:/JavaPrograms/Ch12"

where the two dots (. .) in the string mean “one directory above.”
We can check if a File object is associated correctly to an existing file by call-

ing its exists method:

if (inFile.exists()) {
// inFile is associated correctly to an existing file

} else {
// inFile is not associated to any existing file

}

When a valid association is established, we say the file is opened; a file must
be opened before we can do any input and output to the file.

688 Chapter 12 File Input and Output

A file must be opened before we can execute any file access operations.

A File object can also be associated to a directory. For example, suppose we
are interested in listing the content of directory Ch12. We can first create a File object
and associate it to the directory. After the association is made, we can list the con-
tents of the directory by calling the object’s list method:

File directory = new File("C:/JavaPrograms/Ch12");
String filename[] = directory.list();

for (int i = 0; i < filename.length; i++) {
System.out.println(filename[i]);

}

We check whether a File object is associated to a file or a directory by calling
its boolean method isFile. The following code will print out I am a directory:

File file = new File("C:/JavaPrograms/Ch12");

if (file.isFile()) {
System.out.println("I am a file");

} else {
System.out.println("I am a directory");

}

We can use a javax.swing.JFileChooser object to let the user select a file.
The following statement displays an open file dialog, such as the one shown in
Figure 12.2 (the actual listing depends on the machine on which the program is
executed):

JFileChooser chooser = new JFileChooser();
...
chooser.showOpenDialog(null);

The null argument to the showOpenDialog indicates that there’s no parent frame
window, and the dialog is displayed at the center of the screen. We pass a frame win-
dow object if we want to position the file dialog at the center of the frame. A frame
window is discussed in Chapter 14. In this chapter, we use a null for the argument.

When we create an instance of JFileChooser by passing no arguments to the
constructor, as in this example, it will list the content of the user’s home directory.
For the Windows platform, the user’s home directory by default is the My Docu-
ments folder. We can set the file chooser to list the contents of a desired directory
when it first appears on the screen. We can do this in two ways. The first is to pass
the path name of the directory as a String argument to the constructor. For example,
if we want to start the listing from the C:/JavaPrograms/Ch12 directory, then we
write

JFileChooser chooser
= new JFileChooser("C:/JavaPrograms/Ch12");

. . .
chooser.showOpenDialog(null);

12.1 File and JFileChooser Objects 689

Figure 12.2 A sample JFileChooser object displayed with the showOpenDialog method. The dialog title
and the okay button are labeled Open.

JFileChooser

The second way is to use the setCurrentDirectory method as follows:

File startDir = new File("C:/JavaPrograms/Ch12");

chooser.setCurrentDirectory(startDir);
...
chooser.showOpenDialog(null);

Notice that we have to pass a File object, not a String, to the setCurrentDirectory
method.

Instead of designating a fixed directory as in this example, we may wish to
begin the listing from the current directory. Since the current directory is different
when the program is executed from a different directory, we need a general approach.
We can achieve the generality by writing

String current = System.getProperty("user.dir");

JFileChooser chooser
= new JFileChooser(current);

...

or equivalently

String current = System.getProperty("user.dir");

JFileChooser chooser
= new JFileChooser();

chooser.setCurrentDirectory(new File(current));
...

The content of current is the path name to the current directory.
To check whether the user has clicked on the Open or Cancel button, we test

the return value from the showOpenDialog method.

int status = chooser.showOpenDialog(null);

if (status == JFileChooser.APPROVE_OPTION) {
System.out.println("Open is clicked");

} else { //== JFileChooser.CANCEL_OPTION
System.out.println("Cancel is clicked");

}

Once we determine the Open button is clicked, we can retrieve the selected file as

File selectedFile;

selectedFile = chooser.getSelectedFile();

and the current directory of the selected file as

File currentDirectory;
currentDirectory = chooser.getCurrentDirectory();

690 Chapter 12 File Input and Output

To find out the name and the full path name of a selected file, we can use the
getName and getAbsolutePath methods of the File class.

File file = chooser.getSelectedFile();

System.out.println("Selected File: " +
file.getName());

System.out.println("Full path: " +
file.getAbsolutePath());

To display a JFileChooser with the Save button, we write

chooser.showSaveDialog(null);

which results in a dialog shown in Figure 12.3 (the actual listing depends on the
machine on which the program is executed).

The following Ch12TestJFileChooser class summarizes the methods of JFile-
Chooser and File classes. Note this sample program does not perform actual file
input or output.

12.1 File and JFileChooser Objects 691

Figure 12.3 A sample JFileChooser object displayed with the showCloseDialog method.The dialog title
and the okay button are labeled Save.

/*
Chapter 12 Sample Program: Illustrate the use of the

JFileChooser and File classes.

File: Ch12TestJFileChooser.java
*/

692 Chapter 12 File Input and Output

import java.io.*;
import javax.swing.*;

class Ch12TestJFileChooser {
public static void main (String[] args) {

JFileChooser chooser;
File file, directory;
int status;

chooser = new JFileChooser();

status = chooser.showOpenDialog(null);

if (status == JFileChooser.APPROVE_OPTION) {
file = chooser.getSelectedFile();
directory = chooser.getCurrentDirectory();

System.out.println("Directory: " +
directory.getName());

System.out.println("File selected to open: " +
file.getName());

System.out.println("Full path name: " +
file.getAbsolutePath());

} else {
System.out.println("Open File dialog canceled");

}

System.out.println("\n\n");

status = chooser.showSaveDialog(null);

if (status == JFileChooser.APPROVE_OPTION) {
file = chooser.getSelectedFile();
directory = chooser.getCurrentDirectory();

System.out.println("Directory: " +
directory.getName());

System.out.println("File selected for saving data: " +
file.getName());

System.out.println("Full path name: " +
file.getAbsolutePath());

} else {
System.out.println("Save File dialog canceled");

}
}

}

Figure 12.4 shows a sample output of running the program once.
There is actually no distinction between the Open and Save dialogs created,

respectively, by showOpenDialog and showCloseDialog other than the difference in
the button label and the dialog title. In fact, they are really a shorthand for calling
the showDialog method. Using the showDialog method, we can specify the button
label and the dialog title. For example, this code will produce a JFileChooser dialog
with the text Compile as its title and label for the okay button:

JFileChooser chooser = new JFileChooser();
chooser.showDialog(null, "Compile");

We can use a file filter to remove unwanted files from the list. Let’s say we
want to apply a filter so only the directories and the Java source files (those with the
.java extension) are listed in the file chooser. To do so, we must define a subclass of
the javax.swing.filechooser.FileFilter class and provide the accept and getDescription
methods. The prototypes of these methods are

public boolean accept(File file)
public String getDescription()

The accept method returns true if the parameter file is a file to be included in the list.
The getDescription method returns a text that will be displayed as one of the entries
for the “Files of Type:” drop-down list. Here’s how the filter subclass is defined:

12.1 File and JFileChooser Objects 693

Figure 12.4 A sample output from running the Ch12TestJFileChooser program once.

file filter

/*
Chapter 12 Sample Program: Illustrate how to filter only

Java source files
for listing in JFileChooser

File: JavaFilter.java
*/

import java.io.File;
import javax.swing.filechooser.*;

Notice that we are stating one class in the package
explicitly, instead of using the more common form of

import java.io.*;
to avoid naming conflict.The java.io package has
the interface named FileFilter.

With the filter class Java Filter in place, we can set a file chooser to list only
directories and Java source files by writing

JFileChooser chooser = new JFileChooser();

chooser.setFileFilter(new JavaFilter(());

int status = chooser.showOpenDialog(null);

694 Chapter 12 File Input and Output

class JavaFilter extends FileFilter {

private static final String JAVA = "java";
private static final char DOT = '.';

//accepts only directories and
//files with .java extension only
public boolean accept(File f) {

if (f.isDirectory()) {
return true;

}

if (extension(f).equalsIgnoreCase(JAVA)) {
return true;

} else {
return false;

}
}

//description of the filtered files
public String getDescription() {

return "Java source files (.java)";
}

//extracts the extension from the filename
private String extension(File f) {

String filename = f.getName();
int loc = filename.lastIndexOf(DOT);

if (loc > 0 && loc < filename.length() - 1) {
//make sure the dot is not
//at the first or the last character position
return filename.substring(loc+1);

} else {
return "";

}
}

}

Data members

accept

getDescription

extension

12.2 Low-Level File I/O 695

1. This question is specific to the Windows platform. Suppose you want to open a
file prog1.java inside the directory C:\JavaProjects\Ch11\Step4. What is the
actual String value you pass in the constructor for the File class?

2. What is wrong with the following statement?

JFileChooser chooser

= new JFileChooser("Run");

chooser.showDialog(null);

3. Which method of the JFileChooser class do you use to get the filename of the
selected file? What is returned from the method if the Cancel button is clicked?

12.2 Low-Level File I/O
Once a file is opened by properly associating a File object to it, the actual file
access can commence. In this section, we will introduce basic objects for file
operations. To actually read data from or write data to a file, we must create one of
the Java stream objects and attach it to the file. A stream is simply a sequence of
data items, usually 8 bits per item. Java has two types of streams: an input stream
and an output stream. An input stream has a source from which the data items
come, and an output stream has a destination to which the data items go. To read
data items from a file, we attach one of the Java input stream objects to the file.
Similarly, to write data items to a file, we attach one of the Java output stream
objects to the file.

Java comes with a large number of stream objects for file access operations.
We will cover only those that are straightforward and easy to learn for beginners.
We will study two of them in this section—FileOutputStream and FileInputStream.
These two objects provide low-level file access operations. In Section 12.3 we will
study other stream objects.

Let’s first study how to write data values to a file by using FileOutputStream.
Using a FileOutputStream object, we can output only a sequence of bytes, that is,
values of data type byte. In this example, we will output an array of bytes to a file
named sample1.data. First we create a File object:

File outFile = new File("sample1.data");

Then we associate a new FileOutputStream object to outFile:

FileOutputStream outStream
= new FileOutputStream(outFile);

Now we are ready for output. Consider the following byte array:

byte[] byteArray = {10, 20, 30, 40, 50, 60, 70, 80};

stream

source

destination

FileOutput-
Stream

We write the whole byte array at once to the file by executing
outStream.write(byteArray);

Notice that we are not dealing with the File object directly, but with outStream. It is
also possible to write array elements individually, for example,

//output the first and fifth bytes
outStream.write(byteArray[0]);
outStream.write(byteArray[4]);

After the values are written to the file, we must close the stream:
outStream.close();

If the stream object is not closed, then some data may get lost due to data caching.
Because of the physical characteristics of secondary memory such as hard disks, the
actual process of saving data to a file is a very time-consuming operation, whether
you are saving 1 or 100 bytes. So instead of saving bytes individually, we save them
in a block of, say, 500 bytes to reduce the overall time it takes to save the whole
data. The operation of saving data as a block is called data caching. To carry out
data caching, a part of memory is reserved as a data buffer or cache, which is used
as a temporary holding place. A typical size for a data buffer is anywhere from 1 KB
to 2 KB. Data are first written to a buffer, and when the buffer becomes full, the data
in the buffer are actually written to a file. If there are any remaining data in the
buffer and the file is not closed, then those data will be lost. Therefore, to avoid
losing any data, it is important to close the file at the end of the operations.

696 Chapter 12 File Input and Output

To ensure that all data are saved to a file, close the file at the end of file access
operations.

Many of the file operations, such as write and close, throw I/O exceptions, so
we need to handle them. For the short sample programs, we use the propagation ap-
proach. Here’s the complete program:

/*
Chapter 12 Sample Program:

A test program to save data to a file using FileOutputStream

File: Ch12TestFileOutputStream.java
*/
import java.io.*;

class Ch12TestFileOutputStream {
public static void main (String[] args) throws IOException {

data caching

data buffer

Needs this clause because the file
methods throw I/O exceptions.

To read the data into a program, we reverse the steps in the output routine.
We use the read method of FileInputStream to read in an array of bytes. First we
create a FileInputStream object:

File inFile = new File("sample1.data");
FileInputStream inStream = new FileInputStream(inFile);

Then we read the data into an array of bytes:

inStream.read(byteArray);

Before we call the read method, we must declare and create byteArray:

int filesize = (int) inFile.length();
byte[] byteArray = new byte[filesize];

12.2 Low-Level File I/O 697

//set up file and stream
File outFile = new File("sample1.data");
FileOutputStream outStream = new FileOutputStream(outFile);

//data to output
byte[] byteArray = {10, 20, 30, 40, 50, 60, 70, 80};

//write data to the stream
outStream.write(byteArray);

//output done, so close the stream
outStream.close();

}
}

It may seem odd at first to have both File and FileStream objects to input data
from a file. Why not have just a File to handle everything? File represents a
physical file that is a source of data. Stream objects represent the mechanism
we associate to a file to perform input and output routines. Stream objects can
also be associated to a nonfile data source such as a serial port. So separating
the tasks following the STO principle resulted in more than one class to input
data from a file.

Now it’s true that we can make a shortcut statement such as

fileOutputStream outStream
= new FileOutputStream("input.txt");

where we avoid the explicit creation of a File object. But this shortcut does not
eliminate the fact that the Stream object is associated to a file.

FileInput-
Stream

We use the length method of the File class to determine the size of the file, which in
this case is the number of bytes in the file. We create an array of bytes whose size is
the size of the file.

The following program uses FileInputStream to read in the byte array from the
file sample1.data.

698 Chapter 12 File Input and Output

/*
Chapter 12 Sample Program:

A test program to read data from a file using
FileInputStream

File: Ch12TestFileInputStream.java
*/
import java.io.*;

class Ch12TestFileInputStream {
public static void main (String[] args) throws IOException {

//set up file and stream
File inFile = new File("sample1.data");
FileInputStream inStream = new FileInputStream(inFile);

//set up an array to read data in
int fileSize = (int) inFile.length();
byte[] byteArray = new byte[fileSize];

//read data in and display them
inStream.read(byteArray);
for (int i = 0; i < fileSize; i++) {

System.out.println(byteArray[i]);
}

//input done, so close the stream
inStream.close();

}
}

It is possible to output data other than bytes if we can convert (i.e., typecast)
them into bytes. For example, we can output character data by typecasting them to
bytes.

File outFile = new File("sample1.data");
FileOutputStream outStream = new FileOutputStream(outFile);

//data to output
byte[] byteArray = {(byte) 'J',

(byte) 'a',
(byte) 'v',
(byte) 'a' };

Typecast characters
to bytes.

//write data to the stream
outStream.write(byteArray);

//output done, so close the stream
outStream.close();

To read the data back, we use the read method again. If we need to display the bytes
in the original character values, we need to typecast byte to char. Without the type-
casting, numerical values would be displayed. The following code illustrates the
typecasting of byte to char for display.

File inFile = new File("sample1.data");
FileInputStream inStream = new FileInputStream(inFile);

//set up an array to read data in
int fileSize = inFile.length();
byte[] byteArray = new byte[fileSize];

//read data in and display them
inStream.read(byteArray);

for (int i = 0; i < fileSize; i++) {

System.out.println((char) byteArray[i]);
}

//input done, so close the stream
inStream.close();

Typecasting char to byte or byte to char is simple because ASCII uses 8 bits. But
what if we want to perform file I/O on numerical values such as integers and real
numbers? It takes more than simple typecasting to output these numerical values
to FileOutputStream and read them back from FileInputStream. An integer takes
4 bytes, so we need to break a single integer into 4 bytes and perform file I/O
on this 4 bytes. Such a conversion would be too low-level and tedious. Java
provides stream objects that allow us to read from or write numerical values to
a file without doing any conversions ourselves. We will discuss two of them in
Section 12.3.

12.2 Low-Level File I/O 699

Typecast bytes
back to characters.

1. What is the method you call at the end of all file I/O operations?
2. What is wrong with the following statements? Assume that outStream is a

properly declared and created FileOutputStream object.

byte[] byteArray = {(byte) 'H', (byte) 'i'};
...
outStream.print(byteArray);
...
outStream.close();

12.3 High-Level File I/O
By using DataOutputStream, we can output Java primitive data type values. A
DataOutputStream object will take care of the details of converting the primitive
data type values to a sequence of bytes. Let’s look at the complete program
first. The following program writes out values of various Java primitive data types
to a file. The names of the output methods (those preceded with write) should be
self-explanatory.

700 Chapter 12 File Input and Output

/*
Chapter 12 Sample Program:

A test program to save data to a file using
DataOutputStream for high-level I/O.

File: Ch12TestDataOutputStream.java
*/
import java.io.*;

class Ch12TestDataOutputStream {
public static void main (String[] args) throws IOException {

//set up the streams
File outFile = new File("sample2.data");
FileOutputStream outFileStream = new FileOutputStream(outFile);
DataOutputStream outDataStream = new DataOutputStream

(outFileStream);

//write values of primitive data types to the stream
outDataStream.writeInt(987654321);
outDataStream.writeLong(11111111L);
outDataStream.writeFloat(22222222F);
outDataStream.writeDouble(3333333D);
outDataStream.writeChar('A');
outDataStream.writeBoolean(true);

//output done, so close the stream
outDataStream.close();

}
}

Notice the sequence of statements for creating a DataOutputStream object:

File outFile = new File("sample2.data");
FileOutputStream outFileStream= new FileOutputStream(outFile);
DataOutputStream outDataStream

= new DataOutputStream(outFileStream);

The argument to the DataOutputStream constructor is a FileOutputStream object.
A DataOutputStream object does not get connected to a file directly. The diagram
in Figure 12.5 illustrates the relationships established among the three objects. The
role of the DataOutputStream object is to provide high-level access to a file by
converting a primitive data value to a sequence of bytes, which are then written to
a file via a FileOutputStream object.

To read the data back from the file, we reverse the operation. We use three
objects: File, FileInputStream, and DataInputStream. The following program reads
the data saved by the program Ch12TestDataOutputStream.

12.3 High-Level File I/O 701

DataOutput-
Stream

DataInput-
Stream

File outFile = new File("sample2.data");
FileOutputStream outFileStream = new FileOutputStream(outFile);
DataOutputStream outDataStream = new DataOutputStream(outFileStream);

sample2.data

outDataStream

writeIntwriteFloat writeDouble

outFileStream

outFile

Primitive data type
values are written
to outDataStream.

Primitive data type
values are converted to
a sequence of bytes.

Bytes are written to
the file one at a time.

Figure 12.5 A diagram showing how the three objects outFile, outFileStream, and outDataStream
are related.

/*
Chapter 12 Sample Program:

A test program to load data from a file using
DataInputStream for high-level I/O.

File: Ch12TestDataInputStream.java
*/
import java.io.*;

class Ch12TestDataInputStream {
public static void main (String[] args) throws IOException {

//set up file and stream
File inFile = new File("sample2.data");
FileInputStream inFileStream = new FileInputStream(inFile);
DataInputStream inDataStream = new DataInputStream(inFileStream);

Figure 12.6 shows the relationship among the three objects. Notice that we
must read the data back in the precise order. In other words, if we write data in the
order of integer, float, and character, then we must read the data back in that order,
as illustrated in Figure 12.7. If we don’t read the data back in the correct order, the
results will be unpredictable.

Both FileOutputStream and DataOutputStream objects produce a binary file
in which the contents are stored in the format (called binary format) in which they
are stored in the main memory. Instead of storing data in binary format, we can
store them in ASCII format. With the ASCII format, all data are converted to string
data. A file whose contents are stored in ASCII format is called a text file. One major

702 Chapter 12 File Input and Output

//read values back from the stream and display them
System.out.println(inDataStream.readInt());
System.out.println(inDataStream.readLong());
System.out.println(inDataStream.readFloat());
System.out.println(inDataStream.readDouble());
System.out.println(inDataStream.readChar());
System.out.println(inDataStream.readBoolean());

//input done, so close the stream
inDataStream.close();

}
}

File inFile = new File("sample2.data");
FileInputStream inFileStream = new FileInputStream(inFile);
DataInputStream inDataStream = new DataInputStream(inFileStream);

sample2.data

inDataStream

readIntreadFloat readDouble

inFileStream

inFile

Primitive data type
values are read
from inDataStream.

A sequence of bytes is
converted to the primitive
data type value.

Bytes are read from
the file.

Primitive data type
values are read from
inDataStream.

Figure 12.6 A diagram showing how the three objects inFile, inFileStream, and inDataStream are related.

binary file

text file

benefit of a text file is that we can easily read and modify the contents of a text file
by using any text editor or word processor.

PrintWriter is an object we use to generate a text file. Unlike DataOutput-
Stream, where we have a separate write method for each individual data type, Print-
Writer supports only two output methods: print and println (for print line). An
argument to the methods can be any primitive data type. The methods convert the
parameter to string and output this string value. The constructor of PrintWriter, sim-
ilar to the one for DataOutputStream, requires an output stream as its argument. In
the following program, the parameter is again an instance of FileOutputStream.

12.3 High-Level File I/O 703

outStream.writeInteger(...);
outStream.writeLong(...);
outStream.writeChar(...);
outStream.writeBoolean(...);

inStream.readInteger(...);
inStream.readLong(...);
inStream.readChar(...);
inStream.readBoolean(...);

<integer>
<long>
<char>
<boolean>

aFile

Figure 12.7 The order of write and read operations must match to read the stored data back correctly.

/*
Chapter 12 Sample Program:

A test program to save data to a file using
PrintWriter for high-level I/O.

File: Ch12TestPrintWriter.java
*/
import java.io.*;

class Ch12TestPrintWriter {
public static void main (String[] args) throws IOException {

//set up file and stream
File outFile = new File("sample3.data");
FileOutputStream outFileStream = new FileOutputStream(outFile);
PrintWriter outStream = new PrintWriter(outFileStream);

To read the data from a text file, we use the FileReader and BufferedReader
objects. The relationship between FileReader and BufferedReader is similar to the
one between FileInputStream and DataInputStream. To read data back from a text file,
first we need to associate a BufferedReader object to a file. The following sequence
of statements associates a BufferedReader object to a file sample3.data:

File inFile = new File("sample3.data");
FileReader fileReader = new FileReader(inFile);
BufferedReader bufReader

= new BufferedReader(fileReader);

Then we read data, using the readLine method of BufferedReader,

String str = bufReader.readLine();

and convert the String to a primitive data type as necessary.
Here’s the program to read back from sample3.data, which was created by the

program Ch12TestPrintWriter:

704 Chapter 12 File Input and Output

//write values of primitive data types to the stream
outStream.println(987654321);
outStream.println(11111111L);
outStream.println(22222222F);
outStream.println(33333333D);
outStream.println('A');
outStream.println(true);

//output done, so close the stream
outStream.close();

}
}

We use print and println with PrintWriter.
The print and println methods convert
primitive data types to strings before
writing to a file.

/*
Chapter 12 Sample Program:

A test program to load data from a file using the readLine
method of BufferedReader for high-level String input.

File: Ch12TestBufferedReader.java
*/
import java.io.*;

class Ch12TestBufferedReader {
public static void main (String[] args) throws IOException {

//set up file and stream
File inFile = new File("sample3.data");

Since Java 5.0, we can use the Scanner class introduced in Chapter 3 to input
data from a text file. Instead of associating a new Scanner object to System.in, we
can associate it to a File object. For example,

Scanner scanner = new Scanner(
new File("sample3.data"));

12.3 High-Level File I/O 705

FileReader fileReader = new FileReader(inFile);
BufferedReader bufReader = new BufferedReader(fileReader);
String str;

//get integer
str = bufReader.readLine();
int i = Integer.parseInt(str);

//get long
str = bufReader.readLine();
long l = Long.parseLong(str);

//get float
str = bufReader.readLine();
float f = Float.parseFloat(str);

//get double
str = bufReader.readLine();
double d = Double.parseDouble(str);

//get char
str = bufReader.readLine();
char c = str.charAt(0);

//get boolean
str = bufReader.readLine();
Boolean boolObj = new Boolean(str);
boolean b = boolObj.booleanValue();

System.out.println(i);
System.out.println(l);
System.out.println(f);
System.out.println(d);
System.out.println(c);
System.out.println(b);

//input done, so close the stream
bufReader.close();

}
}

Data are saved in ASCII format, so
the conversion to the primitive
data format is required.

Note: Here we only output, so
there’s no real need to perform
data conversion. But in general
we need to convert ASCII data to
primitive data types to process
them in the program.

will associate scanner to the file sample3.data. Once this association is made, we
can use scanner methods such as nextInt, next, and others to input data from the
file.

The following sample code does the same as Ch12TestBufferedReader but
uses the Scanner class instead of BufferedReader. Notice that the conversion is not
necessary with the Scanner class by using appropriate input methods such as nextInt
and nextDouble.

706 Chapter 12 File Input and Output

/*
Chapter 12 Sample Program:

Illustrate the use of Scanner to input text file

File: Ch12TestScanner.java
*/

import java.util.*;
import java.io.*;

class Ch12TestScanner {

public static void main (String args[]) throws FileNotFoundException,
IOException {

//open the Scanner

Scanner scanner = new Scanner(new File("sample3.data"));

//get integer
int i = scanner.nextInt();

//get integer
long l = scanner.nextLong();

//get float
float f = scanner.nextFloat();

//get double
double d = scanner.nextDouble();

//get char
char c = scanner.next().charAt(0);

//get boolean
boolean b = scanner.nextBoolean();

System.out.println(i);
System.out.println(l);
System.out.println(f);
System.out.println(d);

12.3 High-Level File I/O 707

System.out.println(c);
System.out.println(b);

//input done, so close the scanner
scanner.close();

}
}

Public Methods of FileManager
public String openFile(String filename)

throws FileNotFoundException, IOException
Opens the text file filename and returns the content as a String.

public String openFile() throws IOException
Opens the text file selected by the end user using the standard file open dialog
and returns the content as a String.

public String saveFile(String filename, String data)
throws IOException

Saves the string data to filename.
public String saveFile(String data) throws IOException

Saves the string data to a file selected by the end user using the standard file
save dialog.

/*
Chapter 9 and Chapter 12 Helper Class
File: FileManager.java

*/
import java.io.*;
import javax.swing.*;
class FileManager {

The class uses the PrintWriter and BufferedReader classes for text (String) output
and input. Notice that all public methods throw an IOException, and only the
openFile method that accepts a filename as an argument throws FileNotFound-
Exception also. Here is the class listing:

The FileManager Class
In the Chapter 9 sample development and in Section 12.1, we used the helper class
FileManager. A FileManager object provides file I/O operations for String data. To
refresh our memory, here are the public methods of the class:

private static final String EMPTY_STRING = "";
private static String lineTerminator

= System.getProperty("line.separator");

public FileManager() {
}

public String openFile() throws FileNotFoundException,
IOException {

String filename, doc = EMPTY_STRING;

JFileChooser chooser = new JFileChooser(
System.getProperty("user.dir");

int reply = chooser.showOpenDialog(null);

if(reply == JFileChooser.APPROVE_OPTION) {

doc = openFile(chooser.getSelectedFile().getAbsolutePath());
}

return doc;
}

public String openFile(String filename)
throws FileNotFoundException, IOException {

String line;
StringBuffer document = new StringBuffer(EMPTY_STRING);

File inFile = new File(filename);
FileReader fileReader = new FileReader(inFile);
BufferedReader bufReader = new BufferedReader(fileReader);

while (true) {
line = bufReader.readLine();

if (line == null) break;

document.append(line + lineTerminator);
}

return document.toString();
}

public void saveFile(String data) throws IOException {
String filename, doc = EMPTY_STRING;

JFileChooser chooser = new JFileChooser(
System.getProperty("user.dir");

int reply = chooser.showSaveDialog(null);

if(reply == JFileChooser.APPROVE_OPTION) {

saveFile(chooser.getSelectedFile().getAbsolutePath(),
data);

}
}

708 Chapter 12 File Input and Output

openFile

saveFile

12.4 Object I/O 709

public void saveFile(String filename, String data)
throws IOException {

File outFile = new File(filename);
FileOutputStream outFileStream = new FileOutputStream(outFile);
PrintWriter outStream = new PrintWriter(outFileStream);

outStream.print(data);

outStream.close();
}

}

1. Which type of files can be opened and viewed by a text editor?
2. Which class is used to save data as a text file? Which class is used to read text

files?
3. Assume bufReader, a BufferedReader object, is properly declared and

created. What is wrong with the following?

double d = bufReader.readDouble();

12.4 Object I/O
With Java, we can store objects just as easily as we can store primitive data values.
There are object-oriented programming languages that won’t allow programmers to
store objects directly. In those programming languages, we must write code to store
individual data members of an object separately. For example, if a Person object
has data members name (String), age (int), and gender (char), then we have to store
the three values individually, using the file I/O techniques explained earlier in the
chapter. (Note: String is an object, but it can be treated much as any other primitive
data types because of its immutability.) Now, if the data members of an object
are all primitive data types (or a String), then storing the data members individu-
ally is a chore but not that difficult. However, if a data member is a reference to
another object or to an array of objects, then storing data can become very tricky.
Fortunately with Java, we don’t have to worry about them; we can store objects
directly to a file.

In this section, we will describe various approaches for storing objects. To write
objects to a file, we use ObjectOutputStream; and to read objects from a file, we use
ObjectInputStream. Let’s see how we write Person objects to a file. First we need
to modify the definition of the Person class in order for ObjectOutputStream and

ObjectOut-
putStream

ObjectInput-
Stream

ObjectInputStream to perform object I/O. We modify the definition by adding the
phrase implements Serializable to it.

import java.io.*;
class Person implements Serializable {

//the rest is the same
}

Whenever we want to store an object to a file, we modify its class definition by
adding the phrase implements Serializable to it. Unlike other interfaces, such as
ActionListener, there are no methods for us to define in the implementation class.
All we have to do is to add the phrase.

710 Chapter 12 File Input and Output

Serializable is
defined in java.io.

If we want to perform an object I/O, then the class definition must include the
phrase implements Serializable.

To save objects to a file, we first create an ObjectOutputStream object:

File outFile
= new File("objects.dat");

FileOutputStream outFileStream
= new FileOutputStream(outFile);

ObjectOutputStream outObjectStream
= new ObjectOutputStream

(outFileStream);

To save a Person object, we write

Person person = new Person("Mr. Espresso", 20, 'M');

outObjectStream.writeObject(person);

The following sample program saves 10 Person objects to a file:

/*
Chapter 12 Sample Program: Illustrate the use of ObjectOutputStream

File: Ch12TestObjectOutputStream.java
*/

import java.io.*;

It is possible to save different types of objects to a single file. Assuming the
Account and Bank classes are defined properly, we can save both types of objects to
a single file:

Account account1, account2;
Bank bank1, bank2;

account1 = new Account(); //create objects
account2 = new Account();
bank1 = new Bank();
bank2 = new Bank();

outObjectStream.writeObject(account1);
outObjectStream.writeObject(account2);
outObjectStream.writeObject(bank1);
outObjectStream.writeObject(bank2);

We can even mix objects and primitive data type values, for example,

outObjectStream.writeInt (15);
outObjectStream.writeObject(account1);
outObjectStream.writeChar ('X');

To read objects from a file, we use FileInputStream and ObjectInputStream.
We use the method readObject to read an object. Since we can store any types of

12.4 Object I/O 711

class Ch12TestObjectOutputStream {
public static void main (String[] args) throws IOException {

//set up the streams
File outFile = new File("objects.dat");
FileOutputStream outFileStream

= new FileOutputStream(outFile);
ObjectOutputStream outObjectStream

= new ObjectOutputStream(outFileStream);

//write serializable Person objects one at a time
Person person;
for (int i = 0; i < 10; i++) {

person = new Person("Mr. Espresso" + i, 20+i, 'M');

outObjectStream.writeObject(person);
}

//output done, so close the stream
outObjectStream.close();

}
}

objects to a single file, we need to typecast the object read from the file. Here’s an
example of reading a Person object we saved in the file objects.data.

File inFile
= new File("objects.dat");

FileInputStream inFileStream
= new FileInputStream(inFile);

ObjectInputStream inObjectStream
= new ObjectInputStream(inFileStream);

Person person = (Person) inObjectStream.readObject();

Because there is a possibility of wrong typecasting, the readObject method
can throw a ClassNotFoundException in addition to an IOException. You can catch
or propagate either or both exceptions. If you propagate both exceptions, then the
declaration of a method that contains the call to readObject will look like this:

public void myMethod()
throws IOException, ClassNotFoundException {

...
}

The following sample program reads the Person objects from the objects.dat
file:

712 Chapter 12 File Input and Output

Need to typecast to the object
type we are reading

ClassNot-
Found-
Exception

/*
Chapter 12 Sample Program: Illustrate the use of ObjectInputStream

File: Ch12TestObjectInputStream.java
*/

import java.io.*;

class Ch12TestObjectInputStream {
public static void main (String[] args) throws ClassNotFoundException,

IOException {

//set up file and stream
File inFile = new File("objects.dat");

FileInputStream inFileStream
= new FileInputStream(inFile);

ObjectInputStream inObjectStream
= new ObjectInputStream(inFileStream);

If a file contains objects from different classes, we must read them in the cor-
rect order and apply the matching typecasting. For example, if the file contains two
Account and two Bank objects, then we must read them in the correct order:

account1 = (Account) inObjectStream.readObject();
account2 = (Account) inObjectStream.readObject();
bank1 = (Bank) inObjectStream.readObject();
bank2 = (Bank) inObjectStream.readObject();

Now, consider the following array of Person objects where N represents some
integer value:

Person[] people = new Person[N];

Assuming that all N Person objects are in the array, we can store them to file as

//save the size of an array first
outObjectStream.writeInt(people.length);

//save Person objects next
for (int i = 0; i < people.length; i++) {

outObjectStream.writeObject(people[i]);
}

We store the size of an array at the beginning of the file, so we know exactly how
many Person objects to read back:

int N = inObjectStream.readInt();

for (int i = 0; i < N; i++) {
people[i] = (Person) inObjectStream.readObject();

}

We can actually store the whole array with a single writeObject method,
instead of storing individual elements one at a time, that is, calling the writeObject

12.4 Object I/O 713

//read the Person objects from a file
Person person;
for (int i = 0; i < 10; i++) {

person = (Person) inObjectStream.readObject();

System.out.println(person.getName() + " " +
person.getAge() + " " +
person.getGender());

}

//input done, so close the stream
inObjectStream.close();

}
}

Constructors

add

method for each element. The whole people array can be stored with a single
statement as

outObjectStream.writeObject(people);

and the whole array is read back with a single statement as
people = (Person[]) inObjectStream.readObject();

Notice how the typecasting is done. We are reading an array of Person objects, so
the typecasting is (Person[]). This approach will work with any data structure object
such as a list or map.

The Dorm class
In the Chapter 8 sample development, we used the helper class Dorm to manage a
list of Resident objects. A Dorm object is capable of saving a Resident list to a file
and reading the list from a file. The class uses object I/O discussed in this section
to perform these tasks. A list of Resident objects is maintained by using a
HashMap. Instead of saving Resident objects individually, the whole map is saved
with a single writeObject method and is read by a single readObject method. (The
map data structure was explained in Chapter 10.) Here’s the complete listing:

714 Chapter 12 File Input and Output

/*
Chapter 8 Sample Development Helper Class

File: Dorm.java
*/

import java.io.*;
import java.util.*;

public class Dorm {

private Map<String,Resident> residentTable;

public Dorm() {
residentTable = new HashMap<String,Resident>();

}

public Dorm(String filename)
throws FileNotFoundException,

IOException {

openFile(filename);
}

public void add(Resident resident)
throws IllegalArgumentException{

if (residentTable.containsKey(resident.getName())) {
throw new IllegalArgumentException(

"Resident with the same name already exists");

delete

getResident

getResidentList

openFile

saveFile

} else {
residentTable.put(resident.getName(), resident);

}
}

public void delete(String name) {

residentTable.remove(name);
}

public Resident getResident(String name) {

return residentTable.get(name);
}

public String getResidentList() {
StringBuffer result = new StringBuffer("");

String tab = "\t";
String lineSeparator = System.getProperty("line.separator");

for (Resident res: residentTable.values()) {
result.append(res.getName() + tab +

res.getRoom() + tab +
res.getPassword() + tab +
lineSeparator);

}

return result.toString();
}

public void openFile(String filename)
throws FileNotFoundException,

IOException {

File inFile = new File(filename);
FileInputStream inFileStream =

new FileInputStream(inFile);
ObjectInputStream inObjectStream =

new ObjectInputStream(inFileStream);

try {
residentTable = (Map<String,Resident>)

inObjectStream.readObject();
} catch (ClassNotFoundException e) {

throw new IOException(
"Unrecognized data in the designated file");

}

inObjectStream.close();
}

public void saveFile(String filename)
throws IOException {

12.4 Object I/O 715

716 Chapter 12 File Input and Output

File outFile = new File(filename);
FileOutputStream outFileStream =

new FileOutputStream(outFile);
ObjectOutputStream outObjectStream =

new ObjectOutputStream(outFileStream);

outObjectStream.writeObject(residentTable);

outObjectStream.close();
}

}

1. When do you have to include the clause implements Serializable to a class
definition?

2. You cannot save the whole array at once—you must save the array elements
individually, true or false?

Saving an AddressBook Object

As an illustration of object I/O, we will write a class that handles the storage of an
AddressBook object. The class will provide methods to write an AddressBook object
to a file and to read the object back from the file.

Problem Statement

Write a class that manages file I/O of an AddressBook object.

Overall Plan

Before we begin to design the class, we must modify the definition of the class that
implements the AddressBook interface by adding the phrase implements Serializable,
such as

import java.io.*;
class AddressBookVer1 implements AddressBook,

Serializable {
//same as before

}

In the following discussion, we will use the implementation class AddressBookVers1.
This modification allows us to store instances of the AddressBookVer1 class. We will use

Sample Development12.5 Sample Development

12.5 Sample Development 717

the expression “an AddressBook object” to refer to an instance of any class that imple-
ments the AddressBook interface.

Since the class handles the file I/O operations, we will call the class AddressBook-
Storage. Following the STO (single-task object) principle, this class will be responsible
solely for file I/O of an AddressBook object. The class will not perform, for instance, any
operations that deal with a user interface.

What kinds of core operations should this class support? Since the class handles the
file I/O, the class should support two public methods to write and read an AddressBook
object. Let’s call the methods write and read. The argument will be an AddressBook ob-
ject we want to write or read. If filer is an AddressBookStorage object, then the calls
should be something like

filer.write(addressBook);

and

addressBook = filer.read();

For an AddressBookStorage to actually store an AddressBook object, it must
know the file to which an address book is written or from which it is read. How should we
let the programmer specify this file? One possibility is to let the programmer pass the file-
name to a constructor, such as

AddressBookStorage filer
= new AddressBookStorage("book.data");

Another possibility is to define a method to set the file, say, setFile, which is called as

filer.setFile("book.data");

Instead of choosing one over the other, we will support both. If we don’t provide the
setFile method, filer can input and output to a single file only. By using the setFile
method, the programmer can change the file if she or he needs to. As for the constructor,
we do not want to define a constructor with no argument because we do not want the
programmer to create an AddressBookStorage object without specifying a filename.
Yes, he or she can call the setFile method later, but as the AddressBookStorage class
designer, we cannot ensure the programmer will call the setFile method. If the program-
mer doesn’t call the method, then the subsequent calls to the write or read method
will fail. Some may consider assigning a default filename in a no-argument constructor.
But what will be the default filename? No matter which filename we choose, there’s a
possibility that a file with this filename already exists, which will cause the file to be
erased. To make our class reliable, we will not provide a no-argument constructor.

We will implement the class in the following order:

1. Implement the constructor and the setFile method.

2. Implement the write method.

3. Implement the read method.

4. Finalize the class.

develop-
ment steps

12.5 Sample Development—continued

This order of development follows a natural sequence. We begin with the constructor as
usual. Since the constructor and the setFile method carry out similar operations, we will
implement them together. We will identify necessary data members in this step. The sec-
ond step is to implement the file output routine, because without being able to write an
AddressBook object, we won’t be able to test the file input routine. For the third step, we
will implement the file input routine.

Step 1 Development: Constructor and setFile

In step 1,we will identify the data members and define a constructor to initialize them. We
will also implement the setFile method, which should be very similar to the constructor.

We need File, FileInputStream, FileOutputStream, ObjectInputStream, and
ObjectOutputStream objects to do object I/O. Should we define a data member for
each type of object? This is certainly a possibility, but we should not use any unnecessary
data members. We need ObjectInputStream and ObjectOutputStream objects only
at the time the actual read and write operations take place. We can create these objects
in the read and write methods, only when they are needed. Had we used data mem-
bers for all those objects, we would need to create and assign objects every time the
setFile method was called. But calling the setFile method does not necessarily mean
the actual file I/O will take place. Consider the case where the user changes the filename
before actually saving an address book to a file. This will result in calling the setFile
method twice before doing the actual file I/O. To avoid this type of unnecessary repeti-
tion, we will use one data member only, a String variable filename to keep the filename.
The setFile method simply assigns the parameter to this variable. The constructor can
do the same by calling this setFile method.

At this point, we have only one data member:

//---------------------------
// Data Members
//---------------------------
private String filename; //name of the file to store

//an AddressBook object

The setFile method assigns the parameter to the data member.The class is defined
as follows:

718 Chapter 12 File Input and Output

step 1
design

step 1 code

/*
Chapter 12 Sample Program: Address Book Storage

File: AddressBookStorage.java
*/
class AddressBookStorage {

To test this class, we have included a temporary output statement inside the setFile
method. We will write a test program to verify that we can create an AddressBookStorage
object and use the setFile method correctly:

12.5 Sample Development 719

private String filename;

public AddressBookStorage (String filename) {
setFile(filename);

}

public void setFile(String filename) {
this.filename = filename;
System.out.println("Inside setFile. Filename is " + filename);

//TEMP
}

}

/*
Chapter 12 Sample Program: Driver class to test

the skeleton AddressBookStorage

File: TestAddressBookStorage.java (Step 1)
*/

class TestAddressBookStorage {

public static void main (String[] args) {

AddressBookStorage fileManager;

fileManager = new AddressBookStorage("one.data");
fileManager.setFile("two.data");
fileManager.setFile("three.data");

}
}

Step 2 Development: Implement the write Method

In the second development step, we will implement the write method. From the data
member filename, we will create an ObjectOutputStream object and write the para-
meter AddressBook object to it. A sequence of method calls to create an ObjectOutput-
Stream object can throw an IOException, so we must either propagate it or handle it.

step 2
design

step 1 test

